## Q2 Describe the production of carbon dioxide in the body (60% of marks). What are the physiological reasons why the PaCO<sub>2</sub> may be high? (40% of marks) (March 2009)

CO₂ production → normally ~ 200ml/hr (compared to average oxygen intake of 250ml/hr)

- Produced in the cell mitochondria as a byproduct of aerobic metabolism via the citric acid cycle
  - Entry of a substrate into the mitochondria in the form of acetyl CoA causes the movement of electrons through a series of enzymatic reactions, eventually forming CO<sub>2</sub>, reduced compounds FADH and NADH, and H+ ions
  - o The final movement of electrons occurs via the reduced compounds through the electron transport chain, eventually forming ATP and H₂O.
  - Every 1 molecule of ATP produced is accompanied by 2 molecules of CO<sub>2</sub>
- Respiratory quotient  $R = CO_2$  production /  $O_2$  consumption  $\rightarrow$  depends on fuel substrate (0.7 for fat, 1.0 for CHO), usually about 0.8
- The quantity of carbon dioxide and bicarbonate ion in the body is very large about 120 litres, which is almost 100 times greater than the volume of oxygen.
- CO<sub>2</sub> is carried in the blood in 3 forms dissolved (5%), as bicarbonate (70-80%) and as carbamino compounds (20-25%).

## High PaCO<sub>2</sub>:

- PaCO<sub>2</sub> will be a result of the balance between production and elimination of CO<sub>2</sub>
- P<sub>a</sub>CO<sub>2</sub> should be very similar to P<sub>A</sub>CO<sub>2</sub>, which depends on the alveolar ventilation equation:  $V_A = (V_{CO2}/P_ACO_2).k$ , where  $V_{CO2} = CO_2$  production,  $V_A = alveolar$  ventilation, and k is a constant.
- Rearranging,  $P_ACO_2 = (V_{CO2}/V_A).k$
- Production is described above and may be increased in:
  - o Increased metabolic states fever, malignant hyperthermia, sepsis
  - An increase in the respiratory quotient higher for CHO than fat, for example, as seen with fast paced exercise
- CO2 elimination may be decreased with:
  - Hypoventilation (reduction in tidal volume or RR) fatigue, incomplete reversal of paralysis, spinal cord injury or intracranial cause
  - o Increased alveolar dead space PE, low cardiac output state, PEEP increasing West's zone 1