Q21 Describe the physiological consequences of a progressive rise in blood carbon dioxide levels (Sept 2012)

Normal PaCO2 = 40mmHg

PaCO2 will be a balance between CO2 input (production, via aerobic metabolism, and inhalation, if rebreathing) and CO2 excretion

Effects of a rise in PaCO2:

RESPIRATORY

- ◆ PaCO2 stimulates the central chemoreceptors, which lie on the ventral surface of the medulla and respond to changes in PaCO2 sensed as a change in the pH of the surrounding ECF
- PaCO2 is the most important minute-to-minute controller of respiration; for every 1mmHg change in PaCO2, minute ventilation changes by 2-3L/min. this effect is enhanced in the presence of hypoxia.
- Peripheral chemoreceptors in the carotid and aortic bodies also sense PaCO2, and contribute to the early phase of the response
- ↑PaCO2 will cause acidosis, which is also sensed by the carotid body chemoreceptors, and contributes further to the rise in minute ventilation
- ↑ PaCO2 → ↑ PACO2, which results in $\sqrt{\text{PAO2}}$ (as per the alveolar gas equation) → hypoxia sensed by peripheral chemoreceptors causing a further rise in ventilation
- Shift of the oxygen/Hb dissociation curve to the right, increasing oxygen offloading at the tissues
- ◆ PVR → V/Q mismatch

CNS

- PaCO2 is the most important controller of CBF (a linear relationship exists between the two)
- ↑ CBF → ↑ ICP
- **■** \uparrow PaCO2 \rightarrow \downarrow pH \rightarrow cellular dysfunction (clinically this is often seen as a reduction in LOC)

ANS

Catecholamine release due to hypercapnoea and hypoxia

CVS

- ↑PaCO2 causes ↓ heart rate / contractility, however this may be overridden by catecholamine release
- ↑ afterload due to ↑PVR due to alveolar hypoxia

RENAL

- ↑PaCO2 (severe) can cause anuria
- Renal retention of HCO3- for buffering